We know that the NGSS are composed of three dimensions – Science & Engineering Practices, Disciplinary Core Ideas and Cross-Cutting Concepts – and I am sure you’ve heard the phrase 3-dimensional teaching  or 3-dimensional learning.   What does that really mean?

Lately, through workshops, collaboration and book studies I have been exploring this idea with teachers.  Simply put, 3-dimensional instruction is the integration of the practice, content and cross-cutting concept within a lesson.  While it sounds easy, I think there’s a complexity and a need for thoughtful planning.

Recently, I developed a lesson with the intention of modeling 3-dimensional instruction for middle school science teachers.  It was important to define “lesson”…this was not 50 minutes worth of student engagement, or the activities that happened in a single class period but rather, a series of activities, reading and thinking that are organized around a big idea.  In this way, a lesson will occur over several days.

I began with participants reading and responding to Page Keeley’s formative assessment probe, “Thermometer” (Uncovering Student Ideas in Science vol.3, p. 33).  This probe elicits students’ ideas about thermal expansion, and helps teachers understand whether students attribute expansion of the space between molecules to the rise of the liquid in a thermometer.    After some discussion, participants moved on to build an air thermometer:

Air Thermometer

They were asked to design an investigation to explore what happens to molecules when temperature changes.

  • What data will you collect?
  • How will you record your data?
  • What do you still need to know?

Finally, participants were directed to a chapter from Ck-12 Physical Science for Middle School 

These experiences were planned to support students in MS-PS1-4 “Develop a model that predicts and describes changes in particle motion, temperature and state of a pure substance when thermal energy is added or removed.”  As I mentioned earlier, 3-Dimensional Instruction may sound simple, but the lesson planning can be complex.  I developed a matrix to help think about the depth to which students are using or applying the 3 dimensions:


What are your thoughts?  To what extent was my lesson 3-Dimensional?  What would increase that attribute?  How have you practiced 3-Dimensional instruction?